ONLINE APPENDIX 2

Note: This is Online Appendix 1 of Van der Walt, J., Plastow, N.A. & Unger, M., 2020, 'Motor skill intervention for pre-school children: A scoping review', African Journal of Disability 9(0), a747. https://doi.org/10.4102/ajod.v9i0.747

TABLE 1-A1: Description of records.

Authors	Title	Туре	Level of evidence*	Activities/approaches	Outcome
Colombo-Dougovito A M, Block M E (2019)	Fundamental motor skill interventions for children and adolescents on the autism spectrum: a literature review	Literature Review (5 studie) Quasi-experimental (2) Case studies (2) Multiple method s(1)	111-2	Physical education and adapted physical education lessons Classroom Pivotal Response Teaching Therapy (CPRT)	All included studies reported positive effects following motor skill interventions. Measurements used: Peabody Developmental Motor Scales -2 (PDMS- 2), Test of Gross Motor Development second edition (TGMD), Movement Assessment Battery for Children (M-ABC)
Smits-Engelsman B, Vincon S, Blank R, Quadrado V H, Polatajko H, Wilson P (2018)	Evaluating the evidence for motor-based interventions in developmental coordination disorder: A systematic review and meta-analysis	Systematic review and meta-analysis (30 studies 25 datasets) ¹ RCT (1) ² CCT (10) Case study ³ /NCT(5)	Π	Virtual Reality Training Sport/play exercises e.g. physio ball/theraband exercises Taekwando Handwriting training Functional Movement Power training Balance training circuit Trampoline	The overall effect size (cohen's d) was high (1.06) There was evidence for positive benefits for activity-oriented approaches, body function-oriented combined with activities, active video games, and small group programmes
Najafabadi M G, Sheikh M, Hemayattalab R, Memari A, Aderyani M R, Hafizi F (2018)	The effect of SPARK on social and motor skills of children with autism	Comparative study (pre- test-post-test, two-group control study design)	-1	Sports, Play and Active Recreation for Kids (SPARK) programme. Health-fitness activities: 13 activities including aerobic dance, running games, jump ropes. Skill-fitness: 9 sports including soccer, frisbee, basketball. Control group continued with normal PE activities	Significant improvements were found (between pre and post-test scores) in dynamic balance ($p < 0.001$), static balance ($p < 0.001$) and bilateral integration ($p = 0.049$) as measured with the Bruininks–Oseretsky Test of Motor Proficiency (BOTMP) Significant differences were found between the experimental and control group scores on static and dynamic balance ($p < 0.001$) The Autism Treatment Evaluation checklist (ATEC) questionnaire and Gilliam Autism rating Scale 2 nd edition (GARS-2) showed a positive effect on social interaction ($p < 0.001$)

- ¹ RCT: Randomised-control trial
- ² CCT: Controlled clinical triall
- ³ NCT: Non-control trial

Van Cappellen van Maldegem S J M, van Abswoude F, Krajenbrink H, Steenbergen B (2018)	Motor learning in children with developmental coordination disorder: the role of focus, attention and working memory	Quasi-experimental field based study Pre-post design	III-2	Slingerball throwing task (target throw) Group 1: received feedback with internal focus of attention while group 2 received feedback with external focus of attention	According to the Movement Assessment Battery for Children 2^{nd} edition (M-ABC 2) accuracy improved for both groups (p = 0.24), however there was no significant effect for type of focus of attention (p = 0.785) There was a significant effect of visuospatial working memory on learning (p < 0.01) (Automated Working Memory Assessment – AWMA) Children receiving feedback with external focus of attention improved more if they has a better visuospatial working memory (p < 0.01), however this was not the case for children receiving feedback with internal focus of attention (p > 0.05)
Ketchesen L., Hauck J, Ulrich D (2017)	The effects of an early motor skill intervention on motor skills, levels of physical activity, and socialization in young children with autism spectrum disorder: A pilot study.	Pilot study (pre-test–post-test, two- group control study design)	III-2	Classroom Pivotal Response Teaching (CPRT) Locomotor skill and object control skill training – free play and indirect instruction	Significant difference between groups in three motor components: Locomotor: p < 0.001; object control: p < 0.001; gross quotient : p < 0.01 as measured with ⁴ TGMD - 2
Ward E, Hillier S, Raynor A, Petkov J (2017)	A range of service delivery models for children with developmental coordination disorder are effective: a randomized controlled trial	Randomised Controlled Trial	11	All groups: Fine motor warm up: e.g. playdough Fine motor task e.g. collage Body awareness task e.g. animal walk Gross motor warm up e.g. scooter board Gross motor circuit Modes of delivery: 1. In school with a support worker 2. In school with a physical therapist In clinic with a physical therapist	Overall significant improvement of motor skills as measured with the M- ABC (p=0.00) and TGMD-2 (p=0.00) over time and improvement was maintained or increased after a 6 month period (M- ABC effect size = 0.98; ⁵ TGMD-2 effect size 1.37) There was no group effect between modes of intervention (p = 0.09)
Lowe L, MacMillian AG, Yates C (2015)	Body Weight Support Treadmill Training for children with developmental delay who are ambulatory.	Experimental/Outcome study – sample of convenience with computer generated randomization	III-1	All subjects continued with physiotherapy sessions as usual. Experimental group received up to 3 additional Body Weight Support Treadmill Training (BWSTT) sessions weekly	Significant improvement was seen in gait velocity (p = 0.033) and gross motor skill attainment (p = 0.017) when compared with control group as measured with a 10m walking test and the Gross Motor Function Measure, E.

⁴ TGMD – 2: Test of Gross Motor Development second edition

⁵ TGMD-2: Test of Gross Motor Development second edition

Bremer E, Balogh R, Lloyd M	Effectiveness of a fundamental motor skill	Experimental/Outcome	III-1	Locomotor skills (running, hopping,	Significant improvement of the object
(2015)	intervention for 4-year-old children with	study (waiting list control		leaping), object control (ball skills),	manipulation raw score (p = 0.029) and
	autism spectrum disorder: A pilot study	experimental design)		obstacle courses, free play	total motor quotient ($p = 0.044$) of the ⁶
					PDMS-2, when compared to the control
				Group 1 received treatment first, while	group.
				group 2 acted as control group. Group 2	
				received the same input on completion of	
				the first group's treatment	
Iwanaga R. Honda S. Nakane H.	Pilot study: Efficacy of sensory integration	Pilot study: (quasi-	-2	Sensory Integration (SI) therapy: Use of	The ⁷ SI therapy group and general therapy
Tanaka K. Toeda H. Tanaka G	therapy for Japanese children with high-	experimental design)		sensory and kinetic equipment such as a	group made significant gains post
(2014)	functioning autism spectrum disorder			swing, ball pit, balance beam, ladder and	treatment with the total score of the re-
()				trampoline Specific SI treatment principles	standardised version of the Millers
				applied	assessment for pre-schoolers (I-MAP)
				applied.	Children who received SI therapy
				3 General treatment programme:	improved significantly more with regards
				social skills and communication	to the total score of the 8 LMAP (n =
				training kinetic activities child-	0.005 including the coordination index
				naront play. Some SL principles	$c_{corr} = 0.002$ and the complex index
				included	score ($p = 0.008$) and the complex index
Aizenmen IIF. Standoven IM/	Effect of hispethereny on motor control	Dilat study (single group	11/	Functional barga riding positions on	Scole ($p = 0.034$)
Ajzenman HF, Standeven JVV,	effect of hippotherapy of motor control,	Phot study (single group	IV	therapy herees scheeling figures following	significant improvement found in postural
Shurtleff TE (2013)	adaptive behaviors, and participation in	pre-post design)		therapy norses, schooling ligures, following	control through force plates and video
	children with autism spectrum disorder: a			complex directions, turn taking, planning,	motion capture.
	pilot study			and ball games included.	(p = 0.028)
Bardid F, Deconinck FJA,	The effectiveness of a fundamental motor	Experimental/outcome	111-2	Intervention:	Intervention group: significant
Descamps S, Verhoeven L, De	skill intervention in pre-schoolers with	(Cohort study)		Locomotor skills, ball handling skills,	improvement of locomotor skills (p <
Pooter G, Lenoir M, et al	motor problems depends on gender but			jumping skills, postures and balance, play,	0.001) and object control (p < 0.001)
(2013)	not environmental context			rhythm and dance	measured with the ¹⁰ TGMD-2
				Regular ⁹ PE	49% achieved an average motor skill level
					Control group: presented with decline in
				Control group: Regular PE	motor skill level (p = 0.009)
					Gender: Girls in the intervention group
					made significant progress with locomotor
					skills (p = 0.004) and object control (p =
					0.004), while boys in the control group did
					not show significant progress with
					locomotor skills (p = 0.065 or object
					control (p = 0.278)

⁶ PDMS-2: Peabody Developmental Motor Scales second edition ⁷ SI: Sensory Integration

⁸ J-MAP: Re-standardised version of the Millers assessment for pre-schoolers ⁹ PE: Physical Education

¹⁰ TGMD-2: Test of Gross Motor Development second edition

Case-Smith J, Frolek Clark GJ, Schlabach TL (2013)	Systematic review of interventions used in occupational therapy to promote motor performance for children ages birth - 5 years	Systematic review 24 studies divided into three sections: -Visual-motor interventions for preschool children with developmental delays (4 studies) Non randomised cross- over design Quasi-experimental ¹¹ NCT Single group pre/post Developmental play- based interventions for infants at risk (5 studies) - Interventions for young children with or at risk for		Visual-motor interventions: Sensory-motor activities Child centred vs therapy directed approach (for the purpose of this scoping review, only this section was found to be relevant)	Visual-motor interventions for pre-school children with developmental delays resulted in positive short-term effects on children's visual-motor performance
Ferguson GD, Jelsma D, Jelsma J, Smits-Engelsman BCM (2013)	The efficacy of two task-orientated interventions for children with Developmental Coordination Disorder: Neuromotor Task Training and Nintendo Wii Fit training.	Cerebral Palsy(CP) (15 studies) Comparative study (single-blinded quasi- experimental study design)	-2	Neuromotor Task Training (NTT): Functional groups with collated goals: soccer, netball, indigenous games. Workstations using basic equipment such a balls, buckets, cups and natural materials	The mean total standard score of the 12 M-ABC 2 of the 13 NTT group improved significantly after intervention (p < 0.01) The Wii fit group did not show significant improvement with the total standard
				such as sticks, planks and bricks to practice components of games Nintendo: Wii fit games	scores, (p = 0.26) but a moderate effect size (d = -0.50)
Smits-Engelsman BC, Blank R, Kaay AC, Mosterd-van der Meijs R, Vlugt-van den Brand E, Polatajko HJ, et al.(2013)	Efficacy of interventions to improve motor performance in children with developmental coordination disorder: a combined systematic review and meta- analysis.	Combined systematic review and meta-analysis 26 studies included 20 studies eligible for meta-analysis Systematic review (1) Meat-analysis (1) ¹⁴ RCT's & clinical trials (24)		Task orientated approach Motor Imagery Training Perceptual-motor training Process Orientated training (sensory integration) Medication (Methylphenidate) Teacher and parent guidance	Task orientated approaches and motor learning were indicated above other approaches (dw = 0.89 and dw = 0.83 respectively) Task orientated approaches had a significantly higher effect size than process orientated training (p = 0.01) and comparison (p = 0.006)

¹¹ NCT: Non-control trial

- ¹³ NTT: Neuromotor task training
- ¹⁴ RCT: Randomised-control trial

¹² M-ABC2: Movement Assessment Battery for Children second edition

Alhassan S, Nwaokelemeh O,	Effects of locomotor skill program on	Pilot study	III-2	Locomotor skills programme (LMS)	Locomotor skills programme: Significant
Ghazarian M, Roberts J,	minority pre-schoolers' physical activity	Cohort study		-Low intensity music activity	improvement in leaping skills ($p = 0.01$)
Mendoza A, Shitole S (2012)	levels.			-locomotor skills	when assessed with the ¹⁵ TGMD-2
				-extension activities	Significant reduction of time spent in
				(e.g. rodeo galloping.)	sedentary play ($p=0.02$) as measured with
					the Actigraph GTIM accelerometer
				Control group: supervised free play	
Logan SW, Robinson LE, Wilson	Getting the fundamentals of movement: a	Meta-analysis	-1	Child facilitated	A significant positive effect of motor skill
AE, Lucas WA.(2012)	meta-analysis of the effectiveness of motor	11 studies included		Direct instruction	interventions on the improvement of
	skill interventions in children	¹⁶ CCT(4)		Modified direct instruction	fundamental movement skills in children
		¹⁷ NCT (5)		Mastery	was found (d = 0.39, p < 0.001)
		Quasi-experimental (2)		Psychomotor training	When considered separately,
				Physical education	interventions resulted in significant and
				Music based motor programmes	similar improvements in object control (p
				Activity based after school programme	< 0.001) and locomotor skills (p < 0.001)
				Fitness infusion	
				Occupational Therapy programmes	
Salem Y, Gropack SJ, Coffin D,	Effectiveness of a low-cost virtual reality	Experimental/outcome	П	Experimental group: Nintendo Wii gaming	The experimental group exhibited trends
Godwin EM (2012)	system for children with developmental	study		system (Wii fit and Wii sports)	towards greater improvements than the
	delay: A preliminary randomised single-	Cohort			control group as measured with the Gross
	blind controlled trial.			Control group: Regular occupational	Motor Function Measure (GMFM).
				therapy /physiotherapy, focus was on	Single leg stance test (p = 0.017)
				facilitation of movement transitions,	Right grip strength (p = 0.024)
				balance, walking, and gross and fine motor	Left grip strength (p = 0.043)
				control.	
Golos A, Sarid M, Weill M,	Efficacy of an early intervention program	Comparative study (pre-	III-1	Intervention: Teacher training, monitoring	The intervention group scored
Weintraub N (2011)	for at-risk preschool boys: a two-group	test-post-test, two-group		and collaboration sessions : Graphomotor	significantly higher than the control group
	control study	control study design)		activities (e.g. colouring within lines),	in most performance skills including
				manual dexterity (e.g., cutting), and gross	cognitive tasks (p = 008) (Assessments
				motor activities (e.g., jumping, hopping,	instruments used: Developmental Test of
				balance exercises, ball game	Visual Motor Integration (VMI), ¹⁸ M-
					ABC, ¹⁹ MAP)
				Monitoring: Teacher training	Significant progress was made with
					participation and performance
					(Structured Preschool Participation -
					Observation: SPO), with a large effect size
		Destaur			(n > 0.14 in all)
KIRK IVIA, KNODES RE (2011)	iviotor skill interventions to improve	Keview	1	iviotivational climates:	81% of the studies achieved significant
	rundamental movement skills of pre-	11 studies included		-cniia airectea	improvement in motor skills, mostly
	schoolers with developmental delay	[∠] "KC1 (1)		-facilitator instructed	

¹⁵ TGMD-2: Test of Gross Motor Development second edition

¹⁸ M-ABC: Movement Assessment Battery for Children

²⁰ RCT: Randomised-control trial

¹⁶ CCT: Controlled clinical triall

¹⁷ NCT: Non-control trial

¹⁹ MAP: Millers Assessment for Pre-schoolers

		²¹ NRCT (4) Experimental designs (4) Case Report (2)		Physical Therapy Sensory-motor therapy	locomotor skills, up to level of typically developing peers. Intervention effect for trials (N= 9): (η2 = 0.57–0.85).
Pfeiffer BA, Koenig K, Kinnealey M, Sheppard M, Henderson L (2011)	Effectiveness of sensory integration interventions in children with autism spectrum disorders: a pilot study.	Pilot study (comparative study using a sample of convenience)	III-1`	 ²²SI intervention: Individualised plans, adhering to SI principles, using SI equipment Fine motor intervention: constructional activities, drawing/writing and fine motor crafts 	Significant improvements occurred on the Goal Achievement Scale (GAS), including sensory processing, motor skills, and social functioning for both treatments, but more significant changes occurred for the SI group as rated by parents(p<0.5) and teachers (p<0.01)
Bart O, Podoly T, Bar-Haim,Y (2010)	A preliminary study on the effect of methylphenidate(MPH) on motor performance in children with comorbid DCD and ADHD	Preliminary study (a double-blind within- subject research design)	-2	Ritalin/Concerta as per individual prescribe dosages Control: Placebo tablets	Children who took MPH significantly improved their mean total score with the M-ABC when compared to the group who took placebos (p < 0.02)
May-Benson TA, Koomar JA. (2010)	Systematic review of the research evidence examining the effectiveness of interventions using a sensory integrative approach for children	Systematic review 27 studies including:, i RCT level !(13) Level II (5) Level III (3) Case studies (6) Quality score determined by means of the MacDermid Scale	II	Sensory integration: -SI equipment -sensorimotor play (e.g. ball activity)	Outcomes, including sensorimotor skills and motor planning, related to the SI approach were better than no treatment in >50% of the studies, but not better than alternative treatment methods.
Wuang Y, Wang C, Huang M, Su C (2010)	The effectiveness of simulated developmental horse-riding program in children with autism	Experimental/outcome study (wait list control, pre-post testing)	-2	Simulated developmental horse riding programme (with Joba equipment) in addition to regular occupational therapy sessions	Both groups made significant gains in motor skills (measured with the ²³ BOTMP (p<0.01) and with sensory processing when measured with the Test of Sensory Integration Functions (TSIF) (p <0.1).
Bazyk S, Michaud P, Goodman G, Papp P, Hawkins E, Welch MA (2009)	Integrating occupational therapy services in a kindergarten curriculum: a look at the outcomes.	Outcome study (one group pre-test-post-test)	IV	Indirect: teacher consultation, planning, parent consultation. Direct: Group sessions. Often co-groups with art/music teacher	Significant gains in fine motor skills as measured with the ²⁴ PDMS-2 (p <0.01) were made for all children
Cosper SM, Lee GP, Peters SB, Bishop E (2009)	Interactive metronome training in children with attention deficit and developmental coordination disorders	Experimental/outcome study (pre-test-post-test design)	III-3	Headphones Rhythmic sounds Motion-sensory trigger buttons, which attach either to the hand or foot for use in performing various repetitive patterned activities	Significant improvement were made with visual-motor control (p=0.02) with the BOTMP Significant improvements were made with complex visual choice reaction time on the Continuous Performance Test (p < 0.05) of a vigilance test.

²¹ NRCT: Nonrandomised-control trial

²⁴ PDMS-2: Peabody Developmental Motor Scales second edition

²² SI: Sensory Integration
²³ BOTMP: Bruininks– Oseretsky Test of Motor Proficiency

Robinson LE, Goodway JD (2009)	Instructional climates in preschool children who are at-risk. Part I: object-control skill development	Comparative study (quasi-experimental design)	-2	Control group: free play, with access to general playground equipment Low autonomy group: warm up, motor skill stations, closure. Clear directions and instructions. Facilitator indicates when to change stations. Mastery motivational group: Same activities, but students progress independently through activity stations.	Both instructional climate approaches indicated a significant progress (treatment x time interaction: p<0.001) in object control when compared to control group when measured with the ²⁵ TGMD- 2. No significant difference between the two approaches i.e. mastery motivational climate and low autonomy (p=0.42)
Lahav O, Apter A, Ratzon N (2008)	A comparison of the effects of directive visuomotor intervention versus nondirective supportive intervention in kindergarten and elementary school children	Comparative study Cohort study	III-2	Directive patterns, paper work and fine motor activities Non directive : mind games, memory games, games of chance, social games, cards, board games Control group: No extra input	Significant improvement in visual motor integration skills (measured with the ²⁶ VMI) with the nondirective approach for Kindergarten learners (p < 0.05) when compared to control group. Significant greater improvement with the non-directive approach when compared to the directive approach (p < 0.05). VMI and Developmental Tests of Visual Perception (DTVP) Grade 1 learners showed a significant greater response with the directive approach when compared to the kindergarten group (< 0.05) and a significant improvement in visual motor integration for both approaches when compared to the control group (< 0.05) Grade 1 learners showed significant greater improvement in visual motor integration with the directive approach when compared to children in Kindergarten (p < 0.05)
Hillier S.(2007)	Intervention for children with developmental coordination disorder: a systematic review.	Systematic review 31 studies Level 1: 1 Meta-analysis Level II 16 ²⁷ RCT's Level III: 14 outcome based studies According to NH-MRC levels of evidence (1999)	11	General occupational therapy Sensory Integration Perceptual-motor therapy Kinaesthetic training CO-OP (cognitive orientation to daily occupational performance) Task orientated learning Process orientated learning	Meta-analysis was not possible due to the clinical heterogeneity of the primary studies included. Evidence was considered to be sufficient and of sufficient quality to suggest that all interventions were positive and any of these was considered to be better than no input

 ²⁵ TGMD-2: Test of Gross Motor Development second edition
 ²⁶ VMI: Developmental Test of Visual Motor Integration

²⁷ RCT's: Randomised control trials

				Parent assisted home exercises Physiotherapy Mastery Cognitive-affective tasks Sport activities Task specific training Neuromotor task training Le Bon Depart Teacher/parent guidance	
Bayona CL, McDougall J, Tucker MA, Nichols M, Mandich A (2006)	School-based occupational therapy for children with fine motor difficulties: evaluating functional outcomes and fidelity of services.	Evaluation of service / programme (one-group pre-test-post-test quasi-experimental research design)	111-3	Recommendations to school regarding motor function (in-hand manipulation and motor planning) as well as specific strategies to improve visual perceptual skills. Recommendations for task/environmental changes (e.g. slanted desks) and strategies. All above in form of written home programmes with paper and pencil tasks Limited individual OT sessions	Significant progress was made in written communication as measured with the Vineland Adaptive behaviour Scales – Classroom edition (VABS-C) (p<0.001) Significant improvement with written work and using materials on the School Function Assessment (SFA) (p<0.5)
Niemeijer AS, Schoemaker MM, Smits-Engelsman BCM (2006)	Are teaching principles associated with improved motor performance in children with developmental coordination disorder? A pilot study	Experimental/outcome study (pilot)	III-3	Neuromotor task training Teaching principles: Giving instruction, sharing knowledge, providing or asking for feedback	Significant progress occurred with all students as measured with the ²⁸ M-ABC ($p = 0.007$) as well as with the ²⁹ TGMD-2 ($p = 0.001$) The following teaching principles were associated with success: Providing clues on how to perform a task, asking child about a task, explaining why a task should be executed in a certain way.
Valentini NC, Rudisill ME (2004)	Motivational climate, motor skill development, and perceived competence: two studies of developmental delayed kindergarten children	Comparative study Experiment 1: compared the two motivational climates Experiment 2: Mastery climate 6 months follow up.	III-1	Low autonomy group: teacher in authority roll, rigid grouping and duration for activities, public recognition Mastery: Self-paced instruction and pace with tasks, greater variety of tasks, decision making opportunities and private recognition Same activities for both groups: meaningful motor tasks matching children's abilities	Children in both groups made significant progress in locomotor skills and object control skill with the ³⁰ TGMD (p=0.0001). The children in the mastery group made significantly more progress than those in low autonomy group (p = 0.001) The mastery group performed significantly better on long term follow-up assessments for locomotor skills and object control (p= 0.001)
Dankert HL, Davies PL, Gavin WJ (2003)	Occupational therapy effects on visual- motor skills in preschool children	Experimental/outcome study (quasi- experimental, two-factor mixed design)	-2	Fine motor activities: arts and crafts, finger plays, and small manipulatives Gross motor activities: obstacle course, music, dancing Visual-motor and visual perception activities: drawing, cutting, and assembly	Children with developmental delays and typically developing peers (treatment and control groups) demonstrated significant

 ²⁸ M-ABC: Movement Assessment Battery for Children
 ²⁹ TGMD-2: Test of Gross Motor Development second edition

³⁰ TGMD: Test of Gross Motor Development

					improvement in visual motor integration with the ³¹ VMI scores (p < 0 .0005) Significant progress was also seen with the VMI subtest of visual perception (p <0 .0005) Significant progress with the motor coordination subtest was only seen in the typical development group with treatment (p<0.0005) Planned comparison tests showed that students with developmental delays developed skills at a rate faster than expected when compared to typically developing peers on the VMI
Dreiling DS, Bundy AC (2003)	A comparison of consultative model and direct-indirect intervention with pre-schoolers.	Comparative study (between group design)	111-2	Consultation: therapeutic strategies in the classroom, consultation with teachers and parents Direct treatment: Regular individualised OT programmes	No significant differences were found between the two models (p = 0.724) Both groups made progress when measured according to goals reached: Consultation group: (Mconsult = 48.25; Mdir.svc = 49.69) at approximately the rate expected (Mexpected = 50; SD = 10)
Goodway D, Crowe H, Ward P (2003)	Effects of motor skill instruction on fundamental motor skill development.	Experimental/outcome study (pre-test-post-test quasi-experimental design)	-1	Experimental group: SKIP programme: ball skills, galloping, skipping, running, jumping Control group: Normal Kindergarten play	The intervention (SKIP) group presented with significant progress in both locomotor skills (p<0.001) and object control (p<0.001) as measured with the ³² TGMD-2 The experimental groups' progress was significantly better than the control groups' (p<0.001)
Mandich AD, Polatajko HJ, Macnab JJ, Miller LT (2001)	Treatment of children with developmental coordination disorder: what is the evidence?	Comprehensive survey and review 32 studies included (classification of included studies not available)	111-1	Bottom-up approaches - sensory integration - process orientated treatment - perceptual motor training Top-down approaches -task specific interventions -cognitive approaches (problem solving, cognitive-motor, CO-OP)	All interventions included were considered to be more positive than no input. More evidence available for a top-down approach, however a joint approach was recommended
Case-Smith J (2000)	Effects of occupational therapy services on fine motor and functional performance in preschool children.	Evaluation of service / programme (single group pre/post testing) Descriptive design	IV	Direct intervention through ³³ SI, motor/manipulation, self-care and play/peer interaction	The participants made significant gains in all eight measures over the course of the academic year (based on Tukey post hoc analysis)

 ³¹ VMI: Developmental Test of Visual Motor Integration
 ³² TGMD-2: Test of Gross Motor Development second edition

³³ SI: Sensory Integration

					Participants who received more occupational therapy sessions improved more in visual motor skills (p = 0.43) and social function (p = 0.44). Play (p = 0.15) and peer interaction (p = 0.13) were the only significant predictors of progress with visual motor integration skills. Parts of the following assessments were used: ³⁴ M-ABC, Sensory Integration and Praxis Test (SIPT), ³⁵ DTVP, ³⁶ PDMS, Draw a person (DAP), Pediatric Evaluation of Disability Inventory (PEDI).
Leemrijse C, Meijer OG, Vermeer A, Adèr HJ, Diemel S (2000)	The efficacy of Le Bon Départ (LBD) and Sensory Integration treatment for children with developmental coordination disorder: a randomized study with six single cases.	Evaluation of service/programme (single subject design with multiple baseline and alternating treatments)	III-3	Baseline condition: Movement games at home ³⁷ LBD: Combination of rhythmic music, geometric shapes and body movements ³⁸ SI : Specific SI principles applied	Significant improvement in motor skills following both treatments (SI and LBD) when measured with the M-ABC (p = 0.003), praxis test (p = 0.059) and visual analogue scales (p = 0.028). The LBD treatment showed significantly more gains with a rhythm test when compared to the SI treatment (p<0.05)
Pless M, Carlsson M, Sundelin C, Persson K. (2000)	Effects of group motor skill intervention on five- to six-year-old children with developmental coordination disorder.	Experimental/outcome study	111-1	Experimental group: Purposeful, joyful functional motor activities e.g. skipping with rope, ball games, obstacle courses, games Regular ³⁹ OT consultations service Control group: Regular OT consultation service	No significant difference between groups Within subjects: (F(1) = 2.007, p = 0.165) Between subjects: (F (1) = 0.402, p = 0.530) Significantly more children in the experimental group (p = 0.001) changed to a different (improved) category on the M-ABC than those in the control group (p = 0.809) with the final assessment.
Case-Smith J, Heaphy T, Marr D, Galvin B, Koch V, Ellis MG, et al (1998)	Fine motor and functional performance outcomes in preschool children	Comparative study (quasi-experimental design)	111-2	Regular individualised OT programmes: Visio-motor and manipulation activities Sensory integration activities Consultation	The group without fine motor difficulties made significant gains in the following areas (Tukey's post hoc analysis): In-hand manipulation, manual form perception, visual perception, draw a person, visual motor integration, functional skills, and self-care.

³⁴ M-ABC: Movement Assessment Battery for Children

 ³⁵ DTVP: Developmental Test of Visual Perception
 ³⁶ PDMS: Peabody Developmental Motor Scales

³⁷ LBD: Le Bon Départ

³⁸ SI: Sensory Integration

³⁹ OT: Occupational Therapy

					The group with fine motor difficulties made significant gains in the following areas: In-hand manipulation, manual form perception, motor accuracy, visual perception, draw a person, Peabody fine motor scales, visual motor integration, functional skills, self-care. Children who received therapy input made significant ly more progress in the following areas: in-hand manipulation, motor accuracy, draw a person, Peabody fine motor scale, functional skills (p<0.05)
Baker BJ, Cole KN, Harris SR (1998)	Cognitive referencing as a method of ⁴⁰ OT/ ⁴¹ PT triage for young children.	Comparative study (between group comparison)	III-2	Goal orientated occupational therapy and physiotherapy Consultation Monitoring	Significant improvements in gross and fine motor skills for both groups were made (p< 0.025) when measured with the ⁴² PMDS. No correlation was found between fine motor gains and Intelligence Quotient (IQ) (p = 0.095) or gross motor skills and IQ (p = 0.020)
Rintala I, Pienimaki K, Ahonen T, Kooistra L (1998)	The effects of a psychomotor training program on motor skill development in children with developmental language disorders.	Comparative study	111-2	Psychomotor training: Circuit activities including running, climbing on ladder, jumping on trampoline, rhythmic floor jumping, skipping with rope, ball activities, balancing tasks. Body awareness through the Sherborne development movement method PE: Games and sports	Both groups showed significant improvement over time with scores on the ⁴³ M-ABC and ⁴⁴ TGMD (p<0.001) Children in the psychomotor training group improved significantly more in object control (TGMD) (p= 0.034) and ball skills with the M-ABC (p=0.09) than children who attended regular ⁴⁵ PE.
Parush S, Hahn-Markowitz J (1997)	A comparison of two group settings for treatment in promoting perceptual-motor function of learning disabled children	Comparative study (Quasi-experimental)	111-2	Gross motor: simulated playground with equipment to facilitate perceptual motor training activities e.g. crawling, climbing, balancing Fine motor: quiet room with table top activities such as puzzles, pegboards, block	The two groups were equivalent in making positive perceptual-motor gains, with no significant difference between results on eight areas tested (p>0.05). Instruments used for measurements: ⁴⁶ BOTMP, ⁴⁷ VMI, Motor Free Visual

⁴⁰ OT: Occupational Therapy

⁴¹ PT: Physiotherapy

⁴² PDMS: Peabody Developmental Motor Scales

⁴³ M-ABC: Movement Assessment Battery for Children ⁴⁴ TGMD: Test of Gross Motor Development

⁴⁵ PE: Physical Education

⁴⁶ BOTMP: Bruininks– Oseretsky Test of Motor Proficiency

⁴⁷ VMI: Developmental Test of Visual Motor Integration

				design, drawing and scissor tasks and creative tasks	perception Test (MVPT), ⁴⁸ DAP, Loewenstein Occupational therapy Cognitive assessment (Constructional Praxis subtest), Pediatric Examination of Educational Readiness (spatial directions subtest), Basic Motor Ability Test (bead stringing).
Case-Smith J (1996)	Fine motor outcomes in preschool children Who Receive Occupational Therapy Services	Experimental/outcome study(single group pre/post testing)	III-3	Finger painting on vertical surfaces, finding small objects in resistive materials such as play clay, using magnetic wands to pick up small metal objects, or creating animals from pipe cleaners or other textured materials, use of tweezers, eye droppers, or small tongs to stimulate tool use, adaptation of classroom activities to fit with OT goals	Significant improvement of motor function: in-hand manipulation, tool use and eye-hand coordination ($p < 0.005$) (peg rotation test, ⁴⁹ SIPT, pencil grasp – developmental progression (dp), scissors grasp (dp), bulb dynamometer) Significant improvement of functional skills as measured with the ⁵⁰ PEDI (4 subtests: $p < 0.0$; 2 subtests: $p < 0.5$).
Davies PL, Gavin WJ (1994)	Comparison of individual and group/consultation treatment methods for preschool children with developmental delays	Comparative study (Quasi-experimental)	III-3	Individual sessions: Occupational therapy and physical therapy treatment using a sensory integration and neurodevelopmental approach Group sessions: Occupational therapy and physiotherapy group sessions using a sensory integration and neurodevelopmental approach	Both groups were equivalent in making significant progress in gross and fine motor skills when measured with the ⁵¹ PDMS (p < 0.01) as well as the ⁵² VABS (p = 0.001) There were no statistical significant differences between the two groups as measured with the PDMS and VABS
De Gangi A, Wietlisbach S, Goodin M, Scheiner N (1993)	A comparison of structured sensorimotor therapy and child-centered activity in the treatment of preschool children with sensorimotor problems	Comparative study (A-B cross-over design)	111-2	Both groups received 8 weeks of an intervention, a retest and the followed up by 8 weeks of the other intervention Interventions: Sensorimotor intervention: Therapists used specific handling techniques, exercises, skill training and therapeutic activities Child centered activity: The child initiates all play, the therapist acts as observer and facilitator. Toys and activities that promote sensorimotor development are made available in a safe environment	All children receiving structured sensorimotor therapy showed significant progress in number of months gained with gross motor skills (p = 0.016) and functional skills (p = 0.05) as measured with the PDMS

 ⁴⁸ DAP: Draw-a-person
 ⁴⁹ SIPT: Sensory Integration and Praxis Test

⁵⁰ Pedi: Pediatric Evaluation of Disability Inventory ⁵¹ PDMS: Peabody Developmental Motor Scales

⁵² VABS: Vineland Adaptive behaviour Scales

TABLE 2-A2: Hierarchy of evidence (Merlin, Weston and Tooher, 2009).

Level of evidence	Study design
I	Evidence obtained from a systematic review of all relevant randomised controlled trials
П	Evidence obtained from at least one properly-designed randomised controlled trial
III-1	Evidence obtained from well-designed pseudorandomised controlled trials (alternate allocation or some other method)
III-2	Evidence obtained from comparative studies (including systematic reviews of such studies) with concurrent controls and allocation not randomised, cohort studies, case-control studies, or interrupted time series with a control group
III-3	Evidence obtained from comparative studies with historical control, two or more single arm studies, or interrupted time series without a parallel control group
IV	Evidence obtained from case series, either post-test or pre-test/post-test